Graph Based Semi-supervised Learning with Sharper Edges

نویسندگان

  • Hyunjung Shin
  • N. Jeremy Hill
  • Gunnar Rätsch
چکیده

In many graph-based semi-supervised learning algorithms, edge weights are assumed to be fixed and determined by the data points’ (often symmetric) relationships in input space, without considering directionality. However, relationships may be more informative in one direction (e.g. from labelled to unlabelled) than in the reverse direction, and some relationships (e.g. strong weights between oppositely labelled points) are unhelpful in either direction. Undesirable edges may reduce the amount of influence an informative point can propagate to its neighbours – the point and its outgoing edges have been “blunted.” We present an approach to “sharpening” in which weights are adjusted to meet an optimization criterion wherever they are directed towards labelled points. This principle can be applied to a wide variety of algorithms. In the current paper, we present one ad hoc solution satisfying the principle, in order to show that it can improve performance on a number of publicly available benchmark data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Classification in Under-Resourced Languages Using Graph-Based Semi-Supervised Learning Methods

In sentiment classification, conventional supervised approaches heavily rely on a large amount of linguistic resources, which are costly to obtain for under-resourced languages. To overcome this scarce resource problem, there exist several methods that exploit graph-based semisupervised learning (SSL). However, fundamental issues such as controlling label propagation, choosing the initial seeds...

متن کامل

Experiments in Graph-Based Semi-Supervised Learning Methods for Class-Instance Acquisition

Graph-based semi-supervised learning (SSL) algorithms have been successfully used to extract class-instance pairs from large unstructured and structured text collections. However, a careful comparison of different graph-based SSL algorithms on that task has been lacking. We compare three graph-based SSL algorithms for class-instance acquisition on a variety of graphs constructed from different ...

متن کامل

Semi-Supervised Classification with Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

Graph Construction with Label Information for Semi-Supervised Learning

In the literature, most existing graph-based semisupervised learning (SSL) methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between l...

متن کامل

Relation Extraction Using Label Propagation Based Semi-Supervised Learning

Shortage of manually labeled data is an obstacle to supervised relation extraction methods. In this paper we investigate a graph based semi-supervised learning algorithm, a label propagation (LP) algorithm, for relation extraction. It represents labeled and unlabeled examples and their distances as the nodes and the weights of edges of a graph, and tries to obtain a labeling function to satisfy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006